ON BERNOULLI'S FREE BOUNDARY PROBLEM WITH A RANDOM BOUNDARY
نویسندگان
چکیده
منابع مشابه
THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملSchwarz boundary problem on a triangle
In this paper, the Schwarz boundary value problem (BVP) for the inhomogeneous Cauchy-Riemann equation in a triangle is investigated explicitly. Firstly, by the technique of parquetingreflection and the Cauchy-Pompeiu representation formula a modified Cauchy-Schwarz representation formula is obtained. Then, the solution of the Schwarz BVP is explicitly solved. In particular, the boundary behavio...
متن کاملA Parabolic Free Boundary Problem with Bernoulli Type Condition on the Free Boundary
Consider the parabolic free boundary problem ∆u− ∂tu = 0 in {u > 0} , |∇u| = 1 on ∂{u > 0} . For a realistic class of solutions, containing for example all limits of the singular perturbation problem ∆uε − ∂tuε = βε(uε) as ε → 0, we prove that one-sided flatness of the free boundary implies regularity. In particular, we show that the topological free boundary ∂{u > 0} can be decomposed into an ...
متن کاملOn a Two-point Free Boundary Problem
We study a two-point free boundary problem for a quasilinear parabolic equation. This problem arises in the model of flame propagation in combustion theory. It also arises in the study of the motion of interface moving with curvature in which the studied problem is confined in the conical region bounded by two straight lines and the interface has prescribed touching angles with these two straig...
متن کاملA free boundary problem with curvature
In this paper we are interested in a free boundary problem whith a motion law involving the mean curvature term of the free boundary. Viscosity solutions are introduced as a notion of global-time solutions past singularities. We show the comparison principle for viscosity solutions, which yields the existence of minimal and maximal solutions for given initial data. We also prove uniqueness of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Uncertainty Quantification
سال: 2017
ISSN: 2152-5080
DOI: 10.1615/int.j.uncertaintyquantification.2017019550